Arachidonic Acid Oxygenation by COX-1 and COX-2 MECHANISMS OF CATALYSIS AND INHIBITION*□S
نویسندگان
چکیده
Prostaglandins were discovered in human semen in 1930, but their low concentrations and instability precluded identification for nearly 30 years (for a brief historical review, see Ref. 1). Once they were identified, it was clear they arose from polyunsaturated fatty acids by a complex series of reactions involving oxygenation, cyclization, and the generation of five chiral centers from an achiral substrate. The mechanism of prostaglandin biosynthesis was outlined in 1967 by Hamberg and Samuelsson (2), and the basic tenets have been confirmed in subsequent studies. The key step in their proposed mechanism was the formation of bicyclic peroxides (endoperoxides) as the initial products of polyunsaturated fatty acid oxygenation (Fig. 1). The term cyclooxygenase (COX) 2 was coined to describe the enzyme that carried out this complex chemical transformation, and its role was confirmed by the isolation of prostaglandin endoperoxides in 1973 (3, 4). In addition to catalyzing a fascinating metabolic transformation, COX is an enormously important pharmacological target. Vane reported in 1971 (5) that non-steroidal anti-inflammatory drugs (NSAIDs) inhibit prostaglandin formation and demonstrated that their relative inhibitory potency in vitro correlates to their antiinflammatory activity in vivo. This not only explained the beneficial activity of NSAIDs but also their side effects such as gastrointestinal toxicity and bleeding because prostaglandins and related molecules (i.e. thromboxane) are involved in a very broad range of physiological and pathophysiological responses. The importance of these molecules as autocrine and paracrine mediators has been confirmed recently by the phenotypes of mice bearing targeted deletions in COX genes or prostaglandin receptor genes. The discovery of a second gene (COX-2) coding for cyclooxygenase and the demonstration that its protein product is distributed differently from the originally discovered enzyme (COX-1) raised the possibility that some of the beneficial effects of NSAIDs may be separable from their side effects by development of isoform-selective inhibitors (6–9). This hypothesis has been dramatically validated by the demonstration that selective COX-2 inhibitors are anti-inflammatory and analgesic but lack the gastric toxicity associated with all currently available NSAIDs (10, 11).
منابع مشابه
Arachidonic acid oxygenation by COX-1 and COX-2. Mechanisms of catalysis and inhibition.
Prostaglandins were discovered in human semen in 1930, but their low concentrations and instability precluded identification for nearly 30 years (for a brief historical review, see Ref. 1). Once they were identified, it was clear they arose from polyunsaturated fatty acids by a complex series of reactions involving oxygenation, cyclization, and the generation of five chiral centers from an achi...
متن کاملLipidomics Reveals Dramatic Physiological Kinetic Isotope Effects during the Enzymatic Oxygenation of Polyunsaturated Fatty Acids Ex Vivo
Arachidonic acid (AA, 20:4) is an omega-6 polyunsaturated fatty acid (PUFA) and the main precursor to the class of lipid mediators known as eicosanoids. The enzymes that catalyze the oxygenation of AA begin by abstracting hydrogen from one of three bis-allylic carbons within 1,4-cis,cis-diene units. Substitution of deuterium for hydrogen has been shown to lead to massive kinetic isotope effects...
متن کاملEvaluation of the cyclooxygenase inhibiting effects of six major cannabinoids isolated from Cannabis sativa.
Cyclooxygenase enzymes (COX-1 and COX-2) catalyse the production of prostaglandins from arachidonic acid. Prostaglandins are important mediators in the inflammatory process and their production can be reduced by COX-inhibitors. Endocannabinoids, endogenous analogues of the plant derived cannabinoids, occur normally in the human body. The Endocannabinoids are structurally similar to arachidonic ...
متن کاملCoxibs interfere with the action of aspirin by binding tightly to one monomer of cyclooxygenase-1.
Pain associated with inflammation involves prostaglandins synthesized from arachidonic acid (AA) through cyclooxygenase-2 (COX-2) pathways while thromboxane A(2) formed by platelets from AA via cyclooxygenase-1 (COX-1) mediates thrombosis. COX-1 and COX-2 are both targets of nonselective nonsteroidal antiinflammatory drugs (nsNSAIDs) including aspirin whereas COX-2 activity is preferentially bl...
متن کاملCyclooxygenase-2 expression and its association with thyroid lesions
Cyclooxygenase (COX), also known as prostaglandin H synthase, catalyses the formation of prostaglandins from arachidonic acid. It can be expressed in response to various stimuli, such as hormones, mitogens, cytokines, other inflammatory mediators and growth factors. The product of COX-2 activity has been implicated in carcinogenesis by promoting angiogenesis, inhibiting apoptosis, increasing ce...
متن کامل